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Abstract- The higher order nonlinearity of a Boolean function is 
a cryptographic criterion, which play a role against attacks on 
stream and block ciphers. Also it play a role in coding theory,  
since it is related to the covering radii of Reed-Muller codes.  In 
this paper, we study the lower bounds of second-order 
nonlinearities of a class of cubic Boolean functions of the form   with  and ∈ ′  and some classes of 
cubic Boolean functions based on secondary construction. Whose 
lower bounds on second order nonlinearities improved upon 
previous existing general results. 

 
Index Terms-Cryptography, derivative of Boolean functions, 
second-order nonlinearity, partial spreads. 

 
I. INTRODUCTION 

 
     Boolean functions play an important role in cryptography. 
The Boolean functions used in streams ciphers must have 
high order nonlinearity profile. Any function from  to  
is called a Boolean function on n-variables, where 0, 1  
be the prime field of characteristic 2 and   is extension 
field of degree n over .  The set of all n-variable Boolean 
functions is denoted by . The Algebraic Normal Form 
(ANF) of the Boolean function is given as 

 

 
Where 

 
is a monomial and ∈ . The 

algebraic degree of f, denoted by deg (f) and is the maximum 
degree of monomial for which µ 0. The Hamming 
distance, ,  between , ∈  is the size of set  ∈ ∶    ⊕ 0 . 
   The trace function :   →  is defined by ∑ . For given any , ∈  ,    is an inner 
product of   and . Let 

 
is the set of all affine Boolean 

functions on - variables. Nonlinearity of ∈  is defined as 

∈ , . The Walsh transform of ∈  at ∈  is defined as: 
 

                      ∑ 1 ∈ .  
 
The multiset : ∈  is said to be the Walsh 
spectrum of  . Following is the relationship between 
nonlinearity and Walsh spectrum of  ∈  is 
 2 12 ∈ | | 

 
By Parseval's identity   
        
                            ∑ ∈ 2  
 
It can be shown that | | 2 ⁄ , which implies that 
   2 2 ⁄  
 
Definition 1:  Suppose  is an even integer. A function ∈   is said to be a bent function if and only if 2 2 ⁄  (i.e., 2 ⁄ , 2 ⁄  for all  ∈ . 
    Bent functions first time introduced by Rothous [10]. For 
odd 9 the tight upper bound of nonlinearities of 
Boolean functions  is not known. 
Definition 2:  The derivative of  ∈  with respect to ∈  denoted by   is defined as 
 
              for all  ∈ .  
 
The higher order derivatives are defined as follows. 
Definition 3: Let V be a -dimensional subspace of  
generated by   i.e. V = < >. 

The r-th order derivative of ∈  with respect to V, 
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denoted by     or , , … ,  is defined by    , , … ,  for all ∈ . . 
 It is noted that the -th order derivative of f depends only 

on the choice of the -dimensional subspace V and 
independent of the choice of the basis of V.  
Definition 4: Let ∈   for every non-negative integer r  
smaller than n, we denote by  the r-th order 
nonlinearity of , which is the minimum Hamming distance 
of  from all  variable Boolean functions of algebraic degree 
at most . 
    The set of all Boolean function of n variables of degree at 
most  is said to be the Reed-Muller code , , of length 2   and of order . The sequence of values n ,  for  
ranging from 1  to 1, is said to be the nonlinearity profile 
of  The first order nonlinearity of a Boolean function on n 
variables can be computed by using fast Walsh transform in 
time o(n2n). Unlike first-order nonlinearity there is no 
efficient algorithm to compute second-order nonlinearities for 11. Most efficient algorithm due to Fourquet and 
Tavernier [6] works for  11 and up to 13 for some 
special functions. Thus, identifying classes containing 
Boolean functions with “good” nonlinearity profile is an 
important problem. There is no efficient algorithm to compute 
rth-order(for  2) nonlinearity of a Boolean function. 
Carlet [3, 4] for the first time did the systematic study of 
higher order nonlinearity and nonlinearity profile of Boolean 
functions. He developed a recursive approach to compute the 
lower bounds on rth-order nonlinearities of a function f using 
the ( 1)th order nonlinearities of the derivatives of the f. 
He also obtained of the lower bounds of the second-order 
nonlinearities of several classes of functions, Welch function 
and the inverse function being among of them. We also refer 
to results due to Carlet-Mesnager [5] and Sun-Wu [12]. The 
best known asymptotic upper bound on  is obtained by 
Carlet and Mesnager  [5],  which is 

 

  

     
    In [5] Carlet efficiently lower bounded the nonlinearity 
profile of Dillon type bent functions. Using Carlet's approach 
Gangopadhyay, Sarkar and Telang [7], Gode and 
Gangopadhyay [8], Sun and Wu [12] obtained the lower 
bounds of the second-order nonlinearities of several classes of 
Boolean functions. In this paper, we consider a class of cubic 
Boolean functions of the form    with 3  
and ∈ . A lower bound of second-order nonlinearities of 
these functions is obtained and compared with the lower 
bounds of second-order nonlinearities obtained for functions 
belonging to some other classes of functions which are 
recently studied. 
 

II. PRELIMINARIES 
 
A. Quadratic Boolean function 
Suppose  ∈   is a quadratic function. The binary form 
associated with    is defined by 
 
          , 0 . 

   The kernel of ,  is subspace of  defined by 
 ∈  : , 0 ∀ ∈ . 

 
Lemma 1.  ([1], Proposition 1): Let V be a vector space over 
a field   of characteristic 2 and : →   be a quadratic 

form, then the dimension of    and the dimension of the 
kernel of Q  have the same parity. 
 
Lemma 2. ([1], Lemma 1): Let  be any quadratic Boolean 
function. The kernel,  is the subspace of  consisting of 

those ∈  such that the derivative  is constant. 
That is, 
       ∈ ∶  . 
 
If  is a quadratic Boolean function and ,    is the 
quadratic form associated with it, then the Walsh Spectrum 
of  depends only on the dimension, ,k  of the kernel of  ,  [1, 9]. The weight distribution of the Walsh 
spectrum of  f  is: 
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B. Recursive lower Bounds of Higher-Order Nonlinearities 
Following are some results proved by Carlet [4]. 
Proposition 1. ([4], Proposition 2): Let ∈  and r  be a 
positive integer smaller than n then we have 

               ∈  

In terms of higher order derivatives, 
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12 . ., .. ∈  

 
For every non-negative integer  . 
In particular, for r = 2, 

                                     ∈  

 
Proposition 2.  ([4], Proposition 3): Let  ∈   and    be 
a positive integer smaller than , then we have  
 2 2 2 ∑ ∈   

 
Corollary 1. [[4], Corollary 2]: Let  ∈  and  be a 
positive integer smaller than . Assume that, for some non-
negative integers and , we have 22  for every nonzero ∈ . Then 
                  2 2 1 2                                 2 √ 2   
 
Carlet remarked that in general, the lower bound given by 
the Proposition 2 is potentially stronger than that given in 
Proposition 1 [4].  
   In this paper, we study the lower bounds of second-order 
nonlinearities of a class of cubic Boolean functions of the 
form   with 3  and ∈  and some 
classes of cubic Boolean functions based on secondary 
construction. Whose lower bounds on second order 
nonlinearities improved upon some previous existing 
general results. The derivative of any cubic Boolean 
function has algebraic degree at most 2 and the Walsh 
spectrum of a quadratic Boolean function [1] is completely 
characterized by the dimension of the kernel of the bilinear 
form associated with it. 
 
III. SECOND ORDER NONLINEARITY OF A CLASS 
OF CUBIC BOOLEAN FUNCTIONS OF THE 
PARTICULAR TYPE 
  
 Theorem 1. Suppose  ∈   such that     ∀  ∈ , with 3  and  ∈ ′ . 
Then 2 2 .      
 
Proof:   f(x) =   with 3  and ∈ ′ , 
the first order derivative f  w. r. t. 0, ∈  is       

                                                                                                                        

 
Where  is an affine Boolean function. Let ∈  such 
that , then  
        
    

 
                                           s 
            

    is constant if and only if   
     0 
 
Since ∈  and  3 , therefore, 
    0 

 . .,   
 0 

 . .,        0. 
Using     3 , we have  
                       0 
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    ⁄ 1,   0  ∈ . 
Thus, for any non zero   ∈ , number of ways in which 

 can be chosen so that   is constant are 2  (including 
the case 0). Hence by Lemma 2 we have, the dimension, 

 of the kernel associated with   is r i.e., . Thus the 
Walsh transform of    at any point ∈  is                             2 2 . 

 
Therefore nonlinearity of    is 
                  2 2                  1  

 
Using Proposition 1 we have 

                       2 2                   
 

    Therefore we have a scope to get the better bounds using 
Corollary 1. Comparing (1) and Corollary 1, we have 1, , then by  Corollary 1, 

   2 12 2 1 2 2  2 2  

                                 2 2                              2  
 
 
IV. SECOND ORDER NONLINEARITIES OF A SOME 

CLASSES OF CUBIC BOOLEAN FUNCTIONS BASED 
ON SECONDARY CONSTRUCTION  

 
Lemma 3: Let , 1 ,∈  be a Boolean function defined on  ,   1 then 
the dimension of the kernel of the bilinear form associated to ,  is 1 where  is the dimension of the kernel of the 
bilinear form associated to , , here ∈ , ∈  and  be a cubic Boolean function. 
Proof: The function  can be written as , . Consider a 2-dimensional 
subspace  generated by two vectors ,   and , . The 
second order derivative of  at  is as follows: 
 
             , , , ,  
                                =constant +                                  (3) 
Clearly , ,  is quadratic hence by Lemma 2 the 
kernel,  , , ∈    : , ,  

               = , ∈    : , ,   (4) 
Also it is given that the kernel,  is of dimension . Thus in 
(4)  has 2  distinct values. Corresponding to each value of ,  
can be chosen in 2 ways. Therefore, the total number of ways in 
which ,  can be chosen so that  , ,  is constant is 2 . 2 2 . Hence  ,  contains exactly 2  elements. 

 
Theorem 2: Let  is even and 1 and  be integer such 

that  or   , define a function  defined on  as , 1 , then second 

order nonlinearity of  is given by  

                             2 2 2 2    

Proof: , 1  

Comparing this equation to Lemma 3, when 1 we get 

,  it is given in [3] that the dimension , , of 
the kernel, , is 3 i.e., 3 for all a∈ . Hence by 
Lemma 3, the dimension, , , of the kernel, ,  is 4 

i.e., , 4, for all (a, b)∈ , 0, . Hence 
the Walsh transform for all , μ ∈  is: 

                                   , , μ 2 ,
  

Thus the nonlinearity of ,  is: 
                       , 2 , ∈ | , , μ |  
                      2 2 ,

 

                      2  2  
By using Proposition 2 we get: 
 2 2 2 2 2 2 2   

             2 2 2 2 . 

 
Theorem 3: Suppose ,   1

, then second order nonlinearity of the 

function  defined on 7-variable is: 
                                 24  
Proof: Clearly  is cubic function. It is proved in  [11] that the 
dimension of  the kernel  is 2 where ,

. By lemma 3 we get that the dimension, , , 
of the kernel, , is 3, i.e.,    1, 3. Hence the Walsh 

transform for all , μ ∈  is : 

                        , , μ 2 ,
          

  i.e.,                 , , μ 2 2       
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Thus the nonlinearity of ,  is: 

  , 2 , ∈ | , , μ | 
                          = 2 2 48 
 
By using Proposition 1 we get: 
                           24.  
 
Theorem 4:  Let , 1, then second order nonlinearity of the function  defined on 
7-variables is: 
                                   28 
Proof: Clearly  is cubic function. It is proved in [11 ] that the 
dimension of  the kernel  is 2 at 49 points and 4 at 14 points 

in , where , . Hence by Lemma 5, the 
dimension, , , of the kernel, ,  is 3 at 98 points and 5 

at 28 points in . Therefore, 
                  

  ,  2 2 48,           3, 2 2 32,           5.         
 
By using Proposition 2 we get: 
 2 12 2 2 ,, ∈  

                       = 2 16384 2 98.48 28.32   

                       = 64 √5184  = 28. 

 
Theorem 5: Define Boolean function : →  as follows 
 , 1 , where 

,  ∈  and l is a positive integer such that , 1 1 then for 4, second order nonlinearity of  is: 
                   2 2 2 2 ,      ≡ 1  2,2 2 2 2 ,      ≡ 0  2. 
Proof:  Here the function  is cubic, let 
the dimension of the kernel  associated with    is 

. It is proved in [8] that for all nonzero ∈  is 4 
if  is even else 3. Hence Lemma 5 gives us for all ∈ , the dimension, , , of the kernel, ,  is 5 

i.e.,  , 5 if  is even else , 4. Thus for μ, ∈
 

                      , μ, 2 ,
 

                    i.e.,  , μ, 2 ,            ≡   2 ,            ≡     

 
Therefore nonlinearity of ,  for all , ∈  
except 0 and . 
 

, 2 12 2 ,       ≡ 0  22 12 2 ,       ≡ 1  2 

 
• For  even, Proposition 2 gives 

 2 2 2 2 2 2 2  

i.e.,  2 2 2 2  

 
• For   odd, Proposition 2 gives 

2 12 2 2 2 2 2 2  

                        2 2 2 2 . 

 
 

V. COMPARISONS: 
 

 

      In Table 1, (2 and 3) we give the numerical comparison 
between the bound obtained in Theorem 1(Theorem 3 and 5) 
and the general bound obtained by Carlet [4] and some other 
known bounds.  it is clear that for ∈ 3, 6, 9  the bounds 
obtained by Theorem 1 are very close to maximum known 
bounds.  Also the bounds on second order nonlinearities 
obtained in Theorem 3 and 5 are more efficient.   

 
TABLE 1 

COMPARISON OF THE VALUES OF LOWER BOUNDS OF SECOND 
ORDER NONLINEARITIES WITH SOME OTHER KNOWN BOUNDS 
 

      n, r 
with 
n=3r 

Lower 
bounds 
obtained  in 
Theorem 1 

Gode et 
al.  [8] 
bounds 

Carlet’s 
General 
bounds 
[4] 

*Hmax
[6] 

3, 1 2 -- 2 1 
6, 2 16 10 10 18 
9, 3 166 128 75 196 
12, 
4 1536 1024 600 1760 

15, 
5 13488 10592 4799 -- 

18, 
6 114688 85732 38391 -- 
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         *Hmax used for maximum known Hamming distance. 
 
 

TABLE 2 
COMPARISON OF THE VALUES OF LOWER BOUNDS OF SECOND 

ORDER NONLINEARITIES OBTAINED BY THEOREM 3 AND 5 
(FOR ODD n) WITH SOME OTHER KNOWN BOUNDS 

 

n 

Lower 
bounds 

obtained  
in 

Theorem 
3 and 5 

Gode et 
al.  [8] 
bounds 

Carlet’s 
General 
bounds 

[4] 

*Hmax
[6] 

6 10 10 10 18 
8 64 64 38 84 

10 331 331 150 400 
12 1536 1536 600 1760 

 
 

TABLE 3 
COMPARISON OF THE VALUES OF LOWER BOUNDS OF SECOND 
ORDER NONLINEARITIES OBTAINED BY THEOREM 5(FOR EVEN 

n) WITH SOME OTHER KNOWN BOUNDS 

 

          
n 

Lower bounds 
obtained  in 

Theorem 3 and 5 

Carlet’s 
General 
bounds 

[4] 

*Hmax[6] 

7 19 19 40 
9 128 75 196 

11 661 300 848 
13 3071 1200 --- 

 
VI. CONCLUSIONS 

 
In this paper we presented several classes of cubic Boolean 
functions which shows good behaviour with respect to 
second order nonlinearities and obtained efficient lower 
bounds on the second order nonlinearities of the class of 
cubic Boolean functions. The functions which are used in 
cipher systems are required to have good nonlinearity 
profile. 
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